Structure of a Semideciduous Seasonal Forest in the National Forest of Ipanema, Brazil: Contributing to the Floristic Knowledge of a Poorly Studied Protected Area

Vinícius Londe (Independent Researcher, Lisbon, 1070-118, Portugal)
Felipe Segala Ferreira (Graduate Course in Plant Biology, University of Campinas, Campinas, São Paulo, 13083-970, Brazil)
Fernando Roberto Martins (Plant Biology Department, Institute of Biology, University of Campinas, Campinas, 13083-970, Brazil)

Article ID: 4916



Studies on composition and structure generate crucial information for characterizing plant communities and planning conservation actions. There are still substantial knowledge gaps in Brazilian protected areas, preventing design programs to mitigate biodiversity loss. This is the case of the National Forest of Ipanema (Ipanema NAFO) in São Paulo state, Brazil, where plant diversity remains uncalculated. To help fill this gap, in 1-ha of a seasonal semideciduous forest (SSF) stand on the Araçoiaba hill, the authors sampled all woody stems with dbh ≥ 5 cm in a total of 103 dead and 1,301 living plants representing 65 species, 57 genera, and 31 families. The number of species and families was lower than old-growth SSF and, together with the land-use history, which suggests the community is a secondary stand. The initial species Guazuma ulmifolia, Machaerium stipitatum, Croton floribundus, and Aloysia virgata totalized 50% of the living stems, whereas 37% of the other species summed up only 1.8%. The high abundance of these initial species and the presence of the climax species Cariniana legalis, Holocayx balansae, Myroxylon peruiferum, Zanthoxylum caribaeum and others indicate that the community is in an intermediate to advanced successional stage. Three species are considered vulnerable to extinction and 27 of least concern. Ipanema NAFO is an important conservation unit, sheltering some plants vulnerable to extinction and others locally rare. This study adds to other few studies about the flora of Ipanema NAFO, helping to estimate its biodiversity and planning conservation actions. Additionally, it is a source for defining reference values for ecological restoration in the Atlantic forest.


Community structure; Floresta Nacional de Ipanema; Atlantic forest; Floristic inventory; Vulnerable species

Full Text:



[1] Dengler, J., 2017. Phytosociology. International Encyclopedia of Geography: People, the Earth, Environment and Technology. 1-6. DOI:

[2] Carnaúba, A.F., Ralph, L.N., Leão, S.L.M., et al., 2019. Natural and ecological succession in an urban fragment of the Atlantic Forest in Pernambuco, Brazil. Journal of Experimental Agriculture International 39, 1-10. DOI:

[3] Kier, G., Mutke, J., Dinerstein, E., et al., 2005. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography. 32, 1107-1116. DOI:

[4] Londe, V., Farah, F.T., Rodrigues, R.R., et al., 2020. Reference and comparison values for ecological indicators in assessing restoration areas in the Atlantic Forest. Ecological Indicators. 110, 105928. DOI:

[5] Brazilian Institute of Geography and Statistics, 2015. Indicators of sustainable development: Brazil: 2015. IBGE: Rio de Janeiro. pp. 1-351.

[6] Instituto Socioambiental. Brazilian Protected Areas, 2022. (Accessed 15 March 2022).

[7] Souza, T.V.S.B., Thapa, B., Rodrigues, C.G.O., et al., 2019. Economic impacts of tourism in protected areas of Brazil. Journal of Sustainable Tourism. 27, 735-749. DOI:

[8] Oliveira, U., Soares-Filho, B.S., Paglia, A.P., et al., 2017. Biodiversity conservation gaps in the Brazilian protected areas. Scientific Reports. 7, 9141. DOI:

[9] Mackey, B.G., Watson, J.E.M., Hope, G., et al., 2008. Climate change, biodiversity conservation, and the role of protected areas: An Australian perspective. Biodiversity. 9, 11-18. DOI:

[10] Maciel, E.A., Martins, F.R., 2021. Rarity patterns and the conservation status of tree species in South American savannas. Flora. 285, 151942. DOI:

[11] Bataghin, F.A., Barros, F., Pires, J.S.R., 2010. Distribution of the community of vascular epiphytes in sites under different degrees of disturbance in the Ipanema National Forest, São Paulo, Brazil. Revista Brasileira de Botânica. 33, 501-512. DOI:

[12] Bataghin, F.A., Pires, J.S.R., Barros, F., 2012. Vascular epiphytes at the edge and interior of a semideciduous forest in southeastern Brazil. Hoehnea. 39, 235- 245. DOI:

[13] Galindo, M.T., Almeida, V.P., 2013. Aquatic plants of two reservoirs in the National Forest of Ipanema, Iperó, São Paulo. Revista Eletrônica de Biologia. 6, 102-113.

[14] Albuquerque, G.B., Rodrigues, R.R., 2000. Vegetation of the Araçoiaba hill, National Forest of Ipanema, Iperó (SP). Scientia Forestalis. 58, 145-159.

[15] Silva, A.T., Mazine, F.F., 2016. Myrtaceae in the National Forest of Ipanema, São Paulo, Brazil. Rodriguésia. 67, 203-224. DOI:

[16] ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade, 2022. National Forest of Ipanema. (Accessed 15 March 2022).

[17] Eisenlohr, P.V., Oliveira-Filho, A.T., 2015., Revisiting patterns of tree species composition and their driving forces in the Atlantic forests of southeastern Brazil. Biotropica. 47, 689-701. DOI:

[18] INMET - National Institute of Meteorology, 2022. Meteorological database. br/#. (Accessed 10 March 2022).

[19] Davino, A., 1975. Geology of Araçoiaba Mountain, São Paulo State. Boletim IG. 6, 129-144.

[20] Ranzani, G., Freire, O., Kinjo, T., et al., 1965. Ipanema farm soils. ESALQ/USP: Piracicaba.

[21] IUCN, 2022. IUCN Red List of Threatened Species. Version 2021-3. (Accessed 10 March 2022).

[22] Shepherd, G.J., FITOPAC. 2010. Plant Biology Department, State University of Campinas. (Accessed 12 June 2019).

[23] le Saout, S., Hoffman, M., Shi, Y., et al., 2013. Protected areas and effective biodiversity conservation. Science. 342(6160), 803-805. DOI:

[24] Santos, K., Kinoshita, L.S., 2003. Floristic composition of the woody flora of the Ribeirão Cachoeira forest, Campinas, São Paulo State. Acta Botanica Brasilica. 17, 325-341. DOI:

[25] Leite, E.C., Rodrigues, R.R., 2008. Phytosociology and successional characterization of a fragment of tropical seasonal forest in Southeastern Brazil. Revista Árvore. 32, 583-595. DOI:

[26] Grombone, M.T., Bernacci, L.C., Meira-Neto, J.A.A., et al., 1990. Phytosociological structure of a semideciduous altitudinal forest at Parque Municipal da Grota Funda, Atibaia, São Paulo State. Acta Botanica Brasilica. 4(2), 47-64. DOI:

[27] Ferreira, T.S., Higuchi, P., Silva, A.C., et al., 2015. Distribution and richness of rare tree species in Araucaria forest fragments, along an altitudinal gradient, in Santa Catarina State, Brazil. Revista Árvore. 39, 447-455. DOI:

[28] Pansini, S., Sampaio, A.F., Reis, N.F.C., et al., 2016. Palms richness and selectivity throughout environmental gradientes on Purus-Madeira interfluvial region, Porto Velho, RO, Brazil. Biota Amazônia. 6, 93-100. DOI:

[29] Lei, J., Chen, R., Gui, R., et al., 2020. Human disturbance reduces plant species diversity and stability of Phyllostachys pubescens forests. Research in Ecology. 2, 1-11. DOI:

[30] Corrêa, L.S., Cardoso-Leite, E., Castello, A.C.D., et al., 2014. Structure, floristic composition and successional characterization of fragments of semideciduous seasonal forest in southeast Brazil. Revista Árvore. 38, 799-809. DOI:

[31] Arévalo-Marín, E., Casas, A., Landrum, L., et al., 2021. The taming of Psidium guajava: Natural and cultural history of a neotropical fruit. Frontiers in Plant Sciences. 12, 2138. DOI:

[32] Instituto Hórus, 2022. The Brazil invasive alien species database. (Accessed 17 March 2022).

[33] Biondi, D., Pedrosa-Macedo, J.H., 2008. Invasive plants found in the urban area of Curitiba, Paraná. Floresta. 38, 129-144.

[34] Fabricante, J.R., Ziller, S.R., Araújo, K.C.T., et al., 2015. Non-native and invasive alien plants on fluvial islands in the São Francisco River, northeastern Brazil. Check List. 11, 1-7. DOI:

[35] Bilingual Terminological Dictionary, 2022. Sciadodendron excelsum. ESALQ/USP. http://www.esalq. (Accessed 21 July 2022).

[36] Durigan, G., Siquieira, M.F., Franco, G.A.D.C., et al., 2004. The tree and shrub flora of middle Paranapanema valley: a baseline study for the restoration of natural ecosystems. Researches on conservation and environmental recovery in western São Paulo State. Eds. Vilas Bôas, O., Durigan, G. Páginas e Letras: São Paulo. pp. 199-239.

[37] Benvenuti-Ferreira, G., Coelho, G.C., 2009. Floristics and structure of the tree component in a seasonal forest remnant, Chiapetta, Rio Grande do Sul State, Brazil. Brazilian Journal of Biosciences. 7, 344-353.

[38] Viveiros, E., Francisco, B.S., López, A.M.T., et al., 2021. Drivers of restoration trajectory of a community of regenerant plants: Natural regeneration or tree seedling? Floresta e Ambiente. 28, 1-13. DOI:

[39] Carvalho, K.S., Vasconcelos, H.L., 2002. Community of ants that nest in dead twigs on the ground of Central Amazonian forest, Brazil. Revista Brasileira de Entomologia. 46, 115-121. DOI:

[40] Vasconcellos, A., 2010. Biomass and abundance of termites in three remnant areas of Atlantic Forest in northeastern Brazil. Revista Brasileira de Entomologia. 54, 455-461. DOI:

[41] Amaro, M.A., Soares, C.P.B., Souza, A.L., et al., 2013. Volume, biomass and carbon stocks in a seasonal semideciduous forest in Viçosa, Minas Gerais state. Revista Árvore. 37, 849-857. DOI:

[42] Sena, P.H.A., Fonsêca, N.C., Lins-e-Silva, A.C.B., 2022. Non-negligible role of dead organic matter in a rainforest remnant in Northeast Brazil. Rodriguésia. 73. DOI:

[43] Thorn, S., Seibold, S., Leverkus, A.B., et al., 2020. The living dead: acknowledging life after tree death to stop forest degradation. Frontiers in Ecology and the Environment. 18, 505-512. DOI:

[44] Muscolo, A., Bagnato, S., Sidari, M., et al., 2014. A review of the roles of forest canopy gaps. Journal of Forestry Research. 25, 725-736. DOI:

[45] Moreira-Arce, D., Vergara, P.M., Fierro, A., et al., 2021. Standing dead trees as indicators of vertebrate diversity: Bringing continuity to the ecological role of senescent trees in austral temperate forests. Ecological Indicators. 129, 107878. DOI:

[46] Haight, J., Hammill, E., 2020. Protected areas as potential refugia for biodiversity under climatic change. Biological Conservation. 241, 108258. DOI:

[47] Pires, J.M., Prance, G.T., 1978. The Amazon Forest: a natural heritage to be preserved. Extinction is Forever. Eds: Prance, G. T., Elias, T. S. The New York Botanical Garden: New York. pp. 158-194.

[48] Silva, L.Á., Soares, J.J., 2002. Phytosociological survey of arboreal vegetation of a mesophyllous semideciduous forest fragment, in municipality São Carlos, São Paulo State. Acta Botanica Brasilica, 16, 205-216. DOI:

[49] Hack, C., Longhi, S.J., Boligon, A.A., et al., 2005. Fitossociological analisys of a deciduous seasonal forest fragment in Jaguari county, RS. Ciência Rural. 35, 1083-1091. DOI:

[50] Torres, C.M.M.E., Jacovine, L.A.G., Neto, S.N.O., et al., 2017. Phytosociological analysis and importance value in terms of carbon in a seasonal semideciduous forest. Floresta e Ambiente. 24, 1-10. DOI:

[51] Dias, P.B., Moreira, L.N., Silva, G.F., et al., 2019. Richness, structure and environmental relations in a National Forest in southeast Brazil. Revista Brasileira de Ciências Agrárias. 14, 1-8. DOI:

[52] Gaston, K.J., 1994. Rarity. Springer: Dordrecht. pp. 1-205. DOI:

[53] Soliveres, S., Manning, P., Prati, D., et al., 2016. Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B. 371, 20150269. DOI:

Copyright © 2022 The author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.