A Study on the Effects of Internal Heat Generation on the Thermal Performance of Solid and Porous Fins using Differential Transformation Method

Authors

  • M. G. Sobamowo Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • O. A. Adedibu Department of System Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • O. A. Adeleye Department of Electrical Engineering, The Polytechnic, Ibadan, Oyo State, Nigeria
  • A. O. Adesina Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria

DOI:

https://doi.org/10.30564/ssid.v2i1.1888

Abstract

In this study, the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method. The parametric studies reveal that porosity enhances the finheat dissipating capacity but the internal heat generation decreases the heatenhancement capacity of extended surface. Also, it is established that whenthe internal heat parameter increases to some certain values, some negativeeffects are recorded where the fin stores heat rather than dissipating it. Thisscenario defeats the prime purpose of the cooling fin. Additionally, it is established in the present study that the limiting value of porosity parameterfor thermal stability for the passive device increases as internal heat parameter increases. This shows that although the internal heat parameter canhelp assist higher range and value of thermal stability of the fin, it producesnegative effect which greatly defeats the ultimate purpose of the fin. Theresults in the work will help in fin design for industrial applications whereinternal heat generation is involved.

Keywords:

Thermal analysis, Solid and porous fins, Thermal performance, Temperature-dependent internal heat generation, Differential transformation method

References

[1] S. Kiwan, A. Al-Nimr. Using Porous Fins for Heat Transfer Enhancement. ASME J. Heat Transfer, 2001, 123: 790-5.

[2] S. Kiwan. Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci., 2007a, 46: 1046-1055.

[3] S. Kiwan. Thermal analysis of natural convection porous fins. Tran. Porous Media, 2007b, 67: 17-29.

[4] S. Kiwan, O. Zeitoun. Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow, 2008, 18(5): 618-634.

[5] R. S. Gorla, A. Y. Bakier. Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 2011, 38: 638-645.

[6] B. Kundu, D. Bhanji. An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrigeration, 2011, 34: 337-352.

[7] B. Kundu, D. Bhanja, K. S. Lee. A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer, 2012, 55(25-26): 7611-7622.

[8] A. Taklifi, C. Aghanajafi, H. Akrami. The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med., 2010, 85: 215-31.

[9] D. Bhanja, B. Kundu. Thermal analysis of a constructal T-shaped porous fin with radiation effects.Int J Refrigerat, 2011, 34: 1483-96.

[10] B. Kundu. Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transfer, 2007, 50: 1545-1558.

[11] S. Saedodin, S. Sadeghi, S. Temperature distribution in long porous fins in natural convection condition. Middle-east J. Sci. Res., 2013, 13(6): 812-817.

[12] S. Saedodin, M. Olank, 2011. Temperature Distribution in Porous Fins in Natural Convection Condition, Journal of American Science, 2011, 7(6): 476-481.

[13] M. T. Darvishi, R. Gorla, R.S., Khani, F., Aziz, A.-E. Thermal performance of a porus radial fin with natural convection and radiative heat losses. Thermal Science, 2015, 19(2): 669-678.

[14] M. Hatami, D. D. Ganji. Thermal performance of circular convective-radiative porous fins with different section shapes and materials.Energy Conversion and Management, 2013, 76: 185-193.

[15] M. Hatami , D. D. Ganji. Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). International of J. Ceramics International, 2014, 40: 6765-6775.

[16] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation.Energ.Convers. Manage, 2013, 74: 9-16.

[17] M. Hatami , D. D. Ganji. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis.International Journal of Refrigeration, 2014, 40: 140-151.

[18] M. Hatami, G. H. R. M. Ahangar, D. D. Ganji, K. Boubaker. Refrigeration efficiency analysis for fully wet semi-spherical porous fins.Energy Conversion and Management, 2014, 84: 533-540.

[19] R. Gorla, R.S., Darvishi, M. T. Khani, F. Effects of variable Thermal conductivity on natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 2013, 38: 638-645.

[20] A. Moradi,.,T. Hayat, A. Alsaedi. Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management 2014, 77: 70-77.

[21] S. Saedodin. M. Shahbabaei. Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM).Arab J SciEng. 2013, 38: 2227-2231.

[22] H. Ha, Ganji D. D., Abbasi M. Determination of Temperature Distribution for Porous Fin with Temperature-Dependent Heat Generation by Homotopy Analysis Method. J ApplMech Eng., 2005, 4(1).

[23] H. A. Hoshyar, I. Rahimipetroudi, D. D. Ganji, A. R. Majidian. Thermal performance of porous fins with temperature-dependent heat generation via Homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 2015, 14(4): 53-65.

[24] Y. Rostamiyan,, D. D. Ganji , I. R. Petroudi, M. K. Nejad. Analytical Investigation of Nonlinear Model Arising in Heat Transfer Through the Porous Fin. Thermal Science, 2014, 18(2): 409-417.

[25] S. E. Ghasemi, P. Valipour, M. Hatami, D. D. Ganji. Heat transfer study on solid and porous convective fins with temperature-dependent heat -generation using efficient analytical method J. Cent.South Univ., 2014, 21: 4592-4598.

[26] I. R. Petroudi, D. D. Ganji, A. B. Shotorban, M. K. Nejad, E. Rahimi, R. Rohollahtabar and F. Taherinia. Semi-Analytical Method for Solving Nonlinear Equation Arising in Natural Convection Porous fin. Thermal Science, 2012, 16(5): 1303-1308.

[27] M.G. Sobamowo, O.M. Kamiyo, O.A. Adeleye. Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress, 2017, 1: 39-52.

[28] M.G. Sobamowo. Singular perturbation and differential transform methods to two-dimensional flow of nanofluid in a porous channel with expanding/contracting walls subjected to a uniform transverse magnetic field Thermal Science and Engineering Progress, 2017, 4: 71-84.

Downloads

How to Cite

Sobamowo, M. G., Adedibu, O. A., Adeleye, O. A., & Adesina, A. O. (2020). A Study on the Effects of Internal Heat Generation on the Thermal Performance of Solid and Porous Fins using Differential Transformation Method. Semiconductor Science and Information Devices, 2(1), 29–36. https://doi.org/10.30564/ssid.v2i1.1888

Issue

Article Type

Article