Production of green hydrogen by efficient and economic electrolysis of water with super-alloy nanowire type electrocatalysts

Linsheng Wang (Shokubai Wang Institute, Tokyo, Japan; National Institute for Materials Science, Tsukuba, Japan; The University of Electro-Communications, Tokyo, Japan)

Article ID: 4154

Abstract


Green hydrogen production from the electrolysis of water has good application prospect due to its renewability. The applied voltage of 1.6-2.2V isrequired in the traditional actual water electrolysis process although the the oretical decomposition potential of electrolyzing water is 1.23V. The high overpotential in the electrode reaction results in the high energy-consuming for the water electrolysis processes. The overpotentials of the traditional Ru, Ir and Pt based electrocatalysts are respectively 0.3V, 0.4V and 0.5V, furthermore use of the Pt, Ir and Ru precious metal catalysts also result in high cost of the water electrolysis process. For minimizing the overpoten tials in water electrolysis, a novel super-alloy nanowire electrocatalysts have been discovered and developed for water splitting in the present pa per. It is of significance that the overpotential for the water electrolysis on the super-alloy nanowire electrocatalyst is almost zero. The actual voltage required in the electrolysis process is reduced to 1.3V by using the novel electrocatalyst system with zero overpotential. The utilization of the super-alloy nanowire type electrocatalyst instead of the traditional Pt, Ir and Ru precious metal catalysts is the solution to reduce energy consumption and capital cost in water electrolysis to generate hydrogen and oxygen.

Keywords


Green hydrogen; Zero overpotential; Super-allow nanowires; Electrocatalysts; Electrolysis of wate

Full Text:

PDF

References


[1] S. Wang, A. Lu and CJ Zhong, 2021. Nano Convergence, 8:4.

[2] M.A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J.Fang, J. Xu, L. Zhang, J. Zhang, 2018.Electrochem.Energy Rev. 1(4), 483-530.

[3] A. Li, Y. Sun, T. Yao, H. Han, 2018. Chem. Eur. J.24(69), 18334-18355.

[4] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu,H.M. Chen, 2017. Chem. Soc. Rev. 46(2),337-365.

[5] F. Yu, L. Yu, I. Mishra, Y. Yu, Z. Ren, H. Zhou, 2018.Mater. Today Phys. 7, 121-138.

[6] X. Zou, Y. Zhang, 2015. Chem. Soc. Rev. 44(15),5148-5180.

[7] C. Hu, L. Zhang, J. Gong, 2019. Energy Environ.Sci. 12(9), 2620-2645.

[8] Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou, 2020. Adv.Funct. Mater. 30(15), 1910274.

[9] E. Fabbri, T.J. Schmidt, 2018. ACS Catal. 8(10),9765-9774.

[10] Y. Yan, B.Y. Xia, B. Zhao, X. Wang, 2016. J. Mater.Chem. A 4(45), 17587-17603.

[11] C.J. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam, J. Yin, 2010.Nanotechnology 21(6), 062001.

[12] R. Loukrakpam, J. Luo, T. He, Y. Chen, Z. Xu, P.N.Njoki, B.N. Wanjala, B. Fang, D. Mott, J. Yin, J.Klar, B. Powell, C.J. Zhong, 2011. J. Phys. Chem. C 115(5), 1682-1694.

[13] W. Wang, Z. Wang, J. Wang, C.J. Zhong, C.J. Liu, 2017. Adv. Sci. 4(4), 1600486.

[14] C.J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, L. Wang, B. Fang, Z. Xu, 2008. Energy Environ. Sci. 1(4), 454-466.

[15] R. Jiang, S. on Tung, Z. Tang, L. Li, L. Ding, X. Xi, Y.Liu, L. Zhang, J. Zhang, 2018. Energy Storage Mater. 12, 260-276.

[16] C. Zhang, X. Shen, Y. Pan, Z. Peng, 2017. Front. Energy Res. 11(3), 268-285.

[17] S. Sui, X. Wang, X. Zhou, Y. Su, S. Rifat, C.J. Liu, J.Mater, 2017. Chem. A 5(5), 1808-1825.

[18] L. Wang, 2020. Bulletin of Materials Science, 43, 93.

[19] L. Wang, 2019. Bulletin of Materials Science, 42, 85.

[20] L. Wang, Importance & Applications of Nanotechnology, Austin Publishing Group. Vol. 1,Chapter 1,pp. 1-7, 202.

[21] L. Wang, 2021. Advanced Materials Science and Technology. 3:1.

[22] L. Wang Linsheng, 2021. J Mater Sci Nanotechnol, 8(1): 105.

[23] L. Wang, K. Murata, M. Inaba, 2009. Applied Catalysis A: General, 358, 264-268.

[24] L. Wang, K. Murata, Y. Matsumura, M. Inaba, 2006.Energy & Fuels, 20, 1377-1381.

[25] L. Wang, K. Murata, M. Inaba, 2005. Journal of Power Sources, 145, 707-711.

[26] L. Wang, K. Murata, M. Inaba, 2004. Industrial & Engineering Chemistry Research, 43,3228-3232.

[27] L. Wang, K. Murata, M. Inaba, 2004. Applied Catalysis B: Environmental, 48, 243-248.

[28] L. Wang, K. Murata, M. Inaba, 2004. Applied Catalysis A: General, 257, 43-47.

[29] L. Wang, K. Murata, M. Inaba, 2003. Catalysis Communications, 4, 147-151.

[30] L. Wang, K. Murata, A. Sayari, B. Grandjean, 2001.Chemical Communications, No. 19,1952-1953.

[31] L. Wang, R. Ohnishi, M. Ichikawa, 2000. Journal of Catalysis, 190, 276-283.

[32] M. Ichikawa, R. Ohnishi, L. Wang, July 30, 2002. United States Patent: 6,426,442.



DOI: https://doi.org/10.30564/ssid.v3i2.4154

Refbacks

  • There are currently no refbacks.
Copyright © 2021 Linsheng Wang


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.